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We measure the Compton scattering of 661.6 keV gamma rays and measure the energies of the
scattered gamma ray and the recoiled electron. We fit our results to Compton’s theory of light-
electron scattering, and in the process measure the mass of the electron to be 537± 25 keV, which
matches the accepted value of 511 keV.

FIG. 1. Schematic depiction of Thomson Scattering.
Taken from https://commons.wikimedia.org/wiki/File:

Thomson-scattering.png

I. MOTIVATION AND THEORETICAL
DESCRIPTION

I.1. Historical Background

The main physical process of interest in this paper is
the elastic scattering of light off an electron. The cele-
brated physicist J.J. Thomson analyzed this process in
the early twentieth century using classical electromag-
netic theory and proved that the wavelength of the emit-
ted radiation must be equal to the wavelength of the
incident radiation [1]. The basic idea is that the oscillat-
ing electromagnetic fields of the incident radiation cause
the electron to oscillate, and since accelerating charged
particles emit radiation, the electron emits radiation in
all directions, with a certain differential cross section. As
previously mentioned, Thomson utilized Maxwell’s equa-
tions to demonstrate that the wavelength of the emitted
radiation in this process matches that of the incident ra-
diation. See Figure 1 for a schematic depiction of this
process.

In 1923, A.H. Compton showed that for high energy
incident radiation, the wavelength of the emitted light
was actually longer than the wavelength of the incident
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light. As was the case for many early twentieth cen-
tury discoveries, the solution was based on the quantum
nature of light. By treating the incident radiation as a
particle-like photon and using Einstein’s special relativ-
ity, Compton was able to derive a theoretical prediction
for the wavelength shift.

Our goal in this paper is to provide evidence for Comp-
ton’s theory of light-electron scattering, and in the pro-
cess extract a value for the mass of the electron.

I.2. Derivation of wavelength shift in Compton
Scattering

FIG. 2. Schematic depiction of Compton Scattering.
Modified from https://upload.wikimedia.org/wikipedia/

commons/e/e3/Compton-scattering.svg

Restrict attention to light scattered at an angle θ, as
shown in Figure 2. Let E be the energy of the incoming
photon, E′ be the energy of the scattered photon, and let
Ee be the energy of the post-scattering electron. Let me

be the mass of the electron, and temporarily set c = 1.
The energy-momentum four-vector of the incident pho-
ton is (E,E, 0), and the energy-momentum four-vector
of the scattered photon is (E′, E′ cos θ,E′ sin θ). There-
fore, the energy-momentum four-vector of the scattered
electron is (E − E′ +me, E − E′ cos θ,−E′ sin θ), so

(E − E′ +me)
2 − (E − E′ cos θ)2 − (−E′ sin θ)2 = m2

e.
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FIG. 3. Schematic depiction of our setup

Simplifying this equation and reintroducing c, we find
that

1

E′ −
1

E
=

1

mec2
(1− cos θ). (1)

We set E to be some fixed value, and measure E′ at
various angles θ. By fitting the data to (1), we will be
able to extract a value for me, the mass of the electron.

II. EXPERIMENTAL SETUP

We use gamma rays generated from the radioactive
source 137Cs, which has a strong photopeak at 661.6 keV,
and we use two detectors, which are NaI scintillation
counters. The energy of the incident gamma rays are
high enough such that the primary interaction between
the gamma rays and the scintillator is Compton scatter-
ing.

The 137Cs is placed in a lead howitzer such that we get
a collimated beam of gamma rays. The first detector, the
target detector, is placed vertically directly in the line of
sight of the gamma rays. The second detector, the scatter
detector, is placed horizontally at a variable angle. The
setup is shown in Figure 3.

Given a Compton scattering event in the target detec-
tor, the target detector registers a count with energy Ee

of the scattered electron, and the scatter detector regis-
ters a count with energy E′, the energy of the scattered
photon. In order to only pick up events that correspond
to scattering at the specific angle θ, we set up coinci-
dence counting between the detectors, so counts are reg-
istered only when both detectors measure an event at
essentially the exact same time. Since the scattered pho-
ton travels at the speed of light, the time between the two
events is effectively instantaneous, which is why coinci-
dence counting restricts to Compton scattering events at
angle θ.

In order to restrict to coincidences, we send the de-
tector outputs through a series of electronic transforma-
tions. The basic idea is to convert the analog signal of
a detection (which looks like some smooth bump) into
a sharp square wave (through an amplifier, inverter, and
discriminator), and use a coincidence detector to measure

FIG. 4. Electronic setup schematic. Taken from [2]

when these two sharp square wave signals overlap, cor-
responding to a coincidence. We analyze the outputs of
the detectors in a multichannel analyzer (MCA), which
presents the counts in a histogram format, binned based
on the energy registered by the detector. The full elec-
tronic setup is depicted in Figure 4.
Given a working coincidence setup, the functionality

of the software is as follows. We can turn coincidence
restriction on or off through the software, and for each
detector, the software outputs a histogram of counts at
each channel number. The channel number roughly cor-
responds to energy, but the correspondence needs to be
established, so we have to use known values to construct
a calibration fit to turn channel number into energy val-
ues.

III. MCA CALIBRATION

In order to calibrate the MCA software, we use radioac-
tive sources that produce photopeaks at known energies,
and use a linear fit between energy and channel number.
Note that the calibration for the target detector and the
scatter detector will be different.
We use a combination of the 661.6 keV peak of 137Cs,

the 511 keV peak of 22Na, and the 81, 302, 356 keV peaks
of 133Ba. We place the radioactive source between the
target and scatter detector, and turn off coincidence, so
that we get strong peaks in both detectors. The mea-
sured spectra of the various radioactive sources in the
two detectors is shown in Figure 5.
We use a linear fit

N = αE + β
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FIG. 5. Spectra of calibration sources with labeled true peaks.
Target detector is shown on top, and scatter detector is shown
on bottom.

between channel number and energy. Using χ2 fitting,
we obtain fit parameters

α = [2.68± 0.03]
channels

keV
, β = 24± 6 channels

for the target detector, and

α = [2.11± 0.03]
channels

keV
, β = 16± 10 channels

for the scatter detector. The linear fits along with the χ2

and p-values are shown in Figure 6.

IV. DATA AND ANALYSIS

We let the setup run at angles

θ = 30◦, 60◦, 90◦, 135◦, 150◦

for multi-day exposures. The goal is to extract values for
E′ at each of these angles, in order to compare to (1). To

FIG. 6. Calibration fit of the target and scatter detectors
along with χ2 and p values for the fit.

do this, we need a heuristic for what the spectra of the
two detectors should look like.
In order to construct a useful model for what the spec-

tra should look like, we need to take into account the fact
that restricting to coincidences will not fully restrict to
Compton events with scattering angle θ.
In the scatter spectrum, we expect to see a strong peak

at energy E′, since most of the gamma rays entering the
scatter detector are coming from Compton scattering at
angle θ. Temporarily ignoring coincidence, we expect to
see a strong peak at energy E in the target spectrum,
which corresponds to incident gamma rays directly reg-
istering in the detector, and we expect to see a relatively
flat Compton spectrum, which corresponds to all possible
energies Ee allowed by Compton scattering. The maxi-
mum Ee allowed can be calculated from (1) and the re-
lation Ee = E − E′, and we expect to see a fall off in
the spectrum at this maximum value. This is known as
the Compton edge. Accounting now for the fact that a
large fraction of coincidence events correspond to Comp-
ton scattering at the specific angle θ, we expect to see
a peak at Ee on top of the previously described target
detector spectrum, as a disproportionally large fraction
of our events are now Compton scattering at the specific
angle θ. These heuristics are depicted in Figure 7.
The measured spectrum for θ = 60◦ is shown in Fig-

ure 8. The peak channel number value is measured by
computing the median channel for the peak, and the sta-
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FIG. 7. General expected structure of detector spectra.

tistical uncertainty is calculated by estimating the range
where the peak is relatively flat within Poisson fluctua-
tion. We then use the calibration fit to estimate the peak
energy value. The systematic uncertainty in E′ arises
from the uncertainty in the calibration, which is a fixed
systematic potential error. Not all measurements were as
clean as the θ = 60◦ run, so some of the relevant peaks
were not extractable. The measured values are shown in
the following table. The statistical uncertainty is shown
followed by the systematic uncertainty arising from cali-
bration.

θ Ee (keV) E′ (keV)

30◦ 61± 9± 5 561± 9± 8

60◦ 214± 9± 5 425± 5± 6

90◦ N/A 294± 19± 4

135◦ 412± 15± 5 191± 9± 3

150◦ 421± 15± 5 N/A

As a cross-check, we find that Ee + E′ is between 0.9E
and 0.95E for the three angles where we have both val-
ues. We expect to find Ee + E′ = E, so there is some
systematic downward shift in Ee which we don’t have
a good explanation of, but regardless this more or less
confirms our identifications of the peaks.

We perform a χ2 linear fit of 1/E′ against 1 − cos θ
as per (1). The linear fit along with χ2 and p-values is
shown in Figure 9. The curve fit gives us values for 1

mec2

FIG. 8. Measured spectra for θ = 60◦, with target on top and
scatter on bottom.

and 1
E , so taking the reciprocal, we find results of

E = 675± 25 keV

mec
2 = 537± 25 keV.

V. DISCUSSION

The measured values shown above match the known
values within error, which are E = 661.6 keV andmec

2 =
511 keV. This provides strong evidence for Compton’s
quantum theory of light-electron scattering over Thom-
son’s classical theory, which gives further evidence for the
quantum nature of light.
In order to capture systematic uncertainty, we need

to properly understand why E′+Ee is consistently lower
than E by about 5–10%. We suspect that this systematic
error is mostly in the Ee peak, which means it wouldn’t
affect our analysis, but we don’t have concrete evidence
for this claim. Furthermore, our electrical setup broke
several times due to a faulty discriminator, so our calibra-
tion has potential to be off from run to run. We bench-
marked the calibration between runs, so this is likely not
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FIG. 9. Linear fit of 1/E′ against 1− cos θ

an issue, but a more careful analysis would require a more
consistent electrical setup.
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