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We show that the symmetry group of the N -dimensional isotropic quantum harmonic oscillator is
given by SU(N). We analyze the representations generated by the action of the energies on the
space of states of fixed energy.

I. INTRODUCTION

The quantum harmonic oscillator is a ubiquitous sys-
tem in physics, as it is one of the first nontrivial quantum
systems that is more or less exactly solvable analytically.
It is often the starting point for more complex systems,
analyzed using techniques like perturbation theory. In
particular, it is the basic building block for quantum field
theory, where free fields without interaction are modeled
by infinite dimensional harmonic oscillators.

We are interested in the isotropic case, where the po-
tential is radially symmetric. In this case, the energy
levels of the harmonic oscillator have an unexpectedly
high degree of degeneracy. The nature of the degener-
acy is closely related to the symmetries of the system,
and understanding the underlying symmetries can lead
to a more natural explanation of the supposedly unex-
pected degeneracy. For example, the degeneracy of the
energy levels in the hydrogen atom can be explained by
the rotational symmetry of the system, which leads to
the classification of states by angular momentum.

In this paper, we show that the symmetry group of
the N -dimensional isotropic harmonic oscillator is given
by SU(N), the group of N × N unitary matrices with
determinant 1. We look at the action of this symmetry to
states of fixed energy, which induces a representation of
SU(N). We identify SO(N) (the group of rotations in N -
dimensional space) as a subgroup in this representation,
and elucidate the connection to angular momentum.

Much of this work was first done by Baker [3] and
Demkov [5], with other authors [6],[7] alluding to the
SU(N) symmetry but not directly analyzing its action
on the Hilbert space of oscillator states.

II. REVIEW OF THE HARMONIC
OSCILLATOR

The Hamiltonian for the N -dimensional isotropic har-
monic oscillator is given by

H =
p2

2m
+

1

2
mω2x2,

where x and p are N -component operators. For the rest
of the paper, we will use units where ℏ = m = ω = 1.

Introduce the non-Hermitian ladder operators

ak = 1√
2
(xk + ipk)

a†k = 1√
2
(xk − ipk).

The Hamiltonian rewrites as

H =
N

2
+

N∑
k=1

a†kak. (1)

Using the standard commutation relations [xj , pk] = iδjk,
we derive the commutation relations

[aj , ak] = [a†j , a
†
k] = 0 (2)

[aj , a
†
k] = δjk. (3)

The energy eigenstates are now given by

|n1, . . . , nN ⟩ =
N∏

k=1

(
a†k

)nk

|0⟩ ,

with energy

H |n1, . . . , nN ⟩ =
(
N

2
+ n1 + · · ·+ nN

)
|n1, . . . , nN ⟩ .

Thus, we see that the degeneracy of the energy level N
2 +n

is
(
n+N−1
N−1

)
.

III. SYMMETRIES IN QUANTUM
MECHANICS AND LIE ALGEBRAS

Symmetries in a quantum mechanics take the form of
transformations given by unitary operators U that acts
on operators O by

O → U†OU . (4)

It is particularly interesting to consider the case of in-
finitesimal transformations, which are when U = e−iSθ

for some Hermitian operator S and infinitesimal θ (we
say that S generates the transformation). In this case,
the transformation affects an operator as

O → O + iθ[S,O] (5)

where we have dropped O(θ2) terms (this will be implicit
throughout the rest of the paper). In this paper, we only
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consider continuous transformations (i.e. those that can
be decomposed into infinitesimal transformations), so we
exclude discussion of things like time reversal symmetry.

We say that a transformation given by U is a symmetry
of the Hamiltonian if the Hamiltonian is unchanged under
(4). Note that an infinitesimal transformation generated
by S is a symmetry of the Hamiltonian if and only if
[S,H] = 0.
The set of symmetries form a Lie group G, and the gen-

erators of the infinitesimal form of these symmetries form
a Lie algebra g. Note that g is clearly a vector space, and
if S, T ∈ g, then [S,H] = [T,H] = 0, so [[S, T ],H] = 0,
so [S, T ] ∈ g as well, which shows that g is indeed a Lie
algebra. Since we are looking at continuous transforma-
tions, every element U ∈ G (including non-infinitesimal
transformations) can be written as U = e−iS for some
S ∈ g. By a remarkable result of Baker, Campbell, and
Hausdorff (see for example [8]), we see that the operator
i log

(
e−iSe−iT

)
can be written purely in terms of suc-

cessive commutators of S and T , which shows that the
group structure of G is fully determined by the commu-
tator structure of g. When discussing the theory of Lie
algebras, we often abstract away the fact that g is made
up of Hermitian operators acting on some Hilbert space,
and instead view g as simply a vector space equipped
with a bracket operator [·, ·] : g× g → g.
It is interesting to note that symmetries of a quan-

tum system lead to conservation laws. In particular, if
S generates a symmetry of the Hamiltonian, then S is
a conserved quantity in the following sense. Let |ψ⟩ be
a simultaneous eigenstate of H and S with eigenvalues
E and s (i.e. a state of definite energy and S). Then,
the time evolved state e−iHt |ψ⟩ is also an eigenstate of
S with the same eigenvalue, since

Se−iHt |ψ⟩ = e−iHtS |ψ⟩ = se−iHt |ψ⟩ .

This means that states of definite S conserve their value
of S throughout time evolution.
Common examples of symmetries leading to conserva-

tion laws are spacetime translation symmetry leading to
energy/momentum conservation and rotations leading to
angular momentum conservation.

For a more thorough review of the theory of symme-
tries in quantum mechanics, see [2], or any other standard
quantum mechanics text.

IV. SYMMETRY IN THE HARMONIC
OSCILLATOR

A. Phase Shift Symmetry

Before analyzing the main SU(N) symmetry, we look
at a more straightforward symmetry to illustrate the con-
cepts reviewed in the previous section. Note that the
transformation

ak → eiϕak (6)

for some global phase shift ϕ leaves the Hamiltonian (1)
unchanged.
This symmetry corresponds to time translation sym-

metry, which is given by the unitary time evolution oper-
ator U = eiHϕ. This is clearly a symmetry of Hamiltonian
as H commutes with U , and it acts on ak through

ak → e−iHϕake
iHϕ. (7)

One can verify through direct computation that (6) and
(7) are identical. As a further cross check, note that in
the case of infinitesimal ϕ, ak transforms according to (5)
as

ak → ak + iϕ[−H, ak] = ak + iϕak,

which is indeed the infinitesimal form of the phase shift
transformation.
To elucidate the connection of the phase shift sym-

metry with time translation symmetry, note that in the
Heisenberg picture (see [1]), we have

xk(t) = xk cos t+ pk sin t

pk(t) = pk cos t− xk sin t,

which leads to

ak(t) = e−itak,

which is exactly the phase shift transformation with ϕ =
−t.

B. SU(N) Symmetry

Consider a general transformation of the form

aj →Mjkak (8)

where M ∈ CN×N is some fixed matrix. It is straight-
forward to check that H is unchanged under (8) if and
only if M is a unitary matrix, and we restrict further
discussion to this unitary case. It is also straightforward
to check that the commutator relations (2), (3) are also
unchanged under this transformation.

These transformations include the global phase shift
symmetry discussed above. The phase shift symmetry
corresponds to the conserved quantity H, which isn’t
interesting as it isn’t a new conserved quantity. Thus,
we restrict our attention to transformations where M ∈
SU(N), as a general unitary matrix can be formed by
composing an SU(N) matrix with a phase shift.

Note that the transformation (8) corresponds to some
unitary operator UM through (4). By combining (8) and
(4), it is straightforward to verify that UMUN = UMN,
so the Lie group of such transformations

G := {UM : M ∈ SU(N)}

is isomorphic to SU(N). We now shift our focus to the
Lie Algebra g corresponding to G.
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V. INDUCED REPRESENTATION OF THE LIE
ALGEBRA OF SU(N)

By considering infinitesimal versions of (8), we can
concretely write down the elements of g as Hermitian op-
erators acting on the Hilbert space span {|n1, . . . , nN ⟩}.
This is an infinite dimensional representation of the Lie
algebra of SU(N). Our goal in this section is to write
down a basis for g in this representation. In order to do
this, we need to first review the structure of the Lie al-
gebra in the fundamental representation, i.e. the set of
traceless Hermitian N ×N matrices.

A. Generators of the Lie Algebra of SU(N) in the
Fundamental Representation

Note that e−iA ∈ SU(N) if and only if A is a Hermi-
tian traceless N×N matrix, so the Lie algebra of SU(N)
represented by N×N matrices (i.e. the fundamental rep-
resentation) is simply the vector space of traceless Hermi-
tian N ×N matrices. Denote this Lie algebra by su(N).
Let Aij be the N ×N matrix given by

(Aij)kℓ = −1

2
δkiδℓj −

1

2
δkjδℓi +

1

N
δijδkℓ (9)

for 1 ≤ i ≤ j ≤ N , and let Bij be the N × N matrix
given by

(Bij)kℓ =
i

2
δkiδℓj −

i

2
δkjδℓi (10)

for 1 ≤ i < j ≤ N . It is straightforward to verify that the
matrices Aij , Bij all together span su(N). Furthermore,
they are all linearly independent except for the relation∑N

i=1Aii = 0. We take these matrices to be our “basis”
for su(N), where it is implicitly understood that there is
one linear relation among the basis elements. As a quick
check, the space spanned by these basis elements is

N(N + 1)

2
+
N(N − 1)

2
− 1 = N2 − 1,

which is indeed the dimension of SU(N).
We now derive the bracket relations by computing the

commutators of these basis matrices. A straightforward
computation reveals the nonzero commutators to be

[Aij , Aik] = − i

2
Bjk (11)

[Aij , Aii] = iBij (12)

[Bij , Bik] = − i

2
Bjk (13)

[Aij , Bik] =
i

2
Ajk (14)

[Aij , Bij ] =
i

2
(Ajj −Aii) (15)

[Aii, Bij ] =
i

2
Aij , (16)

where distinct indices are assumed to take distinct values,
and where we have extended the definition of Aij and Bij

from (9) and (10) to all pairs (i, j). Bracket relations that
can be derived by swapping two indices are also omitted.
These constitute the bracket relations of the Lie algebra
su(N).

B. Generators of the Lie algebra in the Induced
Representation

Let Sij be the operator given by

Sij = −1

2

(
a†iaj + a†jai

)
+

1

N
δij

N∑
k=1

a†kak (17)

for 1 ≤ i ≤ j ≤ N , and let Qij be the operator given by

Qij =
1

2i

(
−a†iaj + a†jai

)
. (18)

for 1 ≤ i < j ≤ N . A straightforward computation
reveals that

[Sij , ak] = −(Aij)krar

and

[Qij , ak] = −(Bij)krar.

Note that the infinitesimal transformation U = e−iSijθ

sends

ak → ak+iθ[Sij , ak] = ak−iθ(Aij)krar =
(
e−iθAij

)
kr
ar,

and similarly the infinitesimal transformation U =
e−iQijθ sends

ak →
(
e−iθBij

)
kr
ar.

Therefore, we see that the Sij and Qij are generators for
the Lie algebra g since their infinitesimal transformations
act on the vector a in the same way as the infinitesimal
generators for su(N). We can directly compute the com-
mutators of these operators, and the nonzero ones are as
follows, following the same convention as (11)-(16):

[Sij , Sik] = − i

2
Qjk (19)

[Sij , Sii] = iQij (20)

[Qij , Qik] = − i

2
Qjk (21)

[Sij , Qik] =
i

2
Sjk (22)

[Sij , Qij ] =
i

2
(Sjj − Sii) (23)

[Sii, Qij ] =
i

2
Sij . (24)

Note that these match the bracket relations of su(N)
that we computed in the previous section, so we have
constructed a genuine representation of the Lie algebra
using Hermitian operators that act on the Hilbert space
of harmonic oscillator states.
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C. Connection to Orbital Angular Momentum

Note that the span of the Qij is itself a Lie algebra,
since by (21), we have [Q,Q] ∼ Q. This Lie algebra is
isomorphic to the Lie algebra of SO(N), and arises due
to the fact that the harmonic oscillator Hamiltonian has
rotational symmetry.

We can expand (18) in terms of position and momen-
tum as

Qij = −i(xipj − xjpi),

which shows that the Qij correspond to orbital angular
momentum. One can use this to show that the infinitesi-
mal transformation corresponding to Qij is a rotation of
the ij-plane.

D. Subrepresentations of Fixed Energy

Since the transformations given by (8) preserve H, the
corresponding Lie algebra g should commute with H. In-
deed, one can manually verify from (17) and (18) that
[Sij ,H] = [Qij ,H] = 0. Therefore, the Lie algebra acting
on energy eigenstates preserves the energy, so there is a
natural subrepresentation of su(N) given by the action
of g on the Hilbert space

Hn := {|n1, . . . , nN ⟩ : n1 + · · ·+ nN = n}.

Remarkably, this representation is actually irreducible,
which means that there is no smaller subspace of Hn

which g fixes (see [3]). It turns out that this represen-
tation is the fully symmetric representation with highest

weight (n, 0, . . . , 0) (see [4]). As a cross check, it’s dimen-
sion can be computed by Weyl’s character formula to be(
n+N−1
N−1

)
, which exactly matches the degeneracy of the

energy level.

VI. CONCLUSION

In this paper, we showed that the N -dimensional quan-
tum harmonic oscillator possesses as SU(N) symmetry,

which leads to conservation of the
(
N
2

)
components of

the angular momentum, as well as another N(N+1)
2 − 1

conserved angular momentum like quantities. We further
used the harmonic oscillator Hilbert space to generate a
set of symmetric representations of SU(N).

These invariants have potential to shed light on sys-
tems in quantum field theory (QFT), since free fields in
QFT are described by infinite dimensional oscillators.
Furthermore, we were able to extract concrete repre-
sentations of useful representations of SU(N) using the
Hilbert space spanned by the energy eigenstates of the
harmonic oscillator, which furthers our understanding of
the representation theory of SU(N). In general, there is
potential for physics to help inform representation theory,
if we can find natural physical systems whose symmetry
groups are given by the desired group.
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