
Domain Generalization in RL: A Case Study with Snake

Gopal K. Goel and Owen Dugan

December 6, 2023

Abstract

We examine the problem of general-
izing to unseen domains in reinforce-
ment learning by considering the game
of snake. We train an agent on an open
board and test whether it can translate
its play to environments with obstacles or
with other players. We observe a range
of generalization abilities, depending on
training hyperparameters, leading to in-
sights into overfitting and generalization
in reinforcement learning.

1 Introduction

In recent years, deep learning neural networks
have risen to prominence for their ability to
accurately perform complex tasks such as im-
age recognition and natural language process-
ing. Key to their success is vast amounts
of demonstration data to train on. Unfor-
tunately, in many tasks, demonstration data
is costly or impossible to collect, making su-
pervised neural network learning challenging.
Reinforcement learning allows for the

training of neural networks to perform tasks
without demonstrations. It does so by allow-
ing the neural network to try actions and re-
warding the network based on the quality of
its performance. In this way, the network pro-
duces its own demonstration data and pro-
gressively discovers successful behaviors.
One challenge of reinforcement learning is

that agents trained through reinforcement

learning can struggle to generalize to environ-
ments outside of the domain of the environ-
ments on which the agents have been trained
[1]. This can lead to challenges, especially in
applications where training is done in simu-
lated environments [2].

In this paper, we examine the problem of
generalizing to unseen domains in reinforce-
ment learning by considering the game of
snake. We train an agent on an open board
and test whether it can translate its play to
environments with obstacles or with other
players, seeking to gain insight into general-
ization and overfitting in reinforcement learn-
ing.

2 Methodology

2.1 Environment Description

We use a modified version the Gym-Snake
environment taken from [3]. Gym-Snake is
an implementation of the classic game snake
with a state/action/reward interface, as spec-
ified by the OpenAI gym specification. In
particular, for a single snake, the action space
at any time is {↑,←, ↓,→}. Each time the
snake crosses over a piece of food, it’s length
increases by 1, and a new piece of food is ran-
domly spawned at an empty grid location. If
the snake head enters a snake cell or exits the
frame, the snake dies. The snake gains a re-
ward of +1 for eating a piece of food, and a
reward of −1 for dying, at which point it no

1



Figure 1: Single Frame from multi-snake run.
Observation windows are overlayed on top of
the environment.

longer takes any actions.
The environment supports multiple snakes

playing together. An example frame from an
environment run is shown in Figure 1.

2.2 Agent Overview

Our goal is to train agents that observe the
state of a snake, and take actions that opti-
mize the discounted reward of the snake over
time. In particular, if the snake eats food at
times t1, . . . , tn, and dies at time T , then the
discounted reward is(

n∑
i=1

γti

)
− γT , (1)

where γ < 1 is the discount factor.
We make the simplifying assumption that

the agents can only observe an 11 × 11 grid
centered at the head of the snake. Parts of
the observation window that spill off the grid
are colored black (i.e. the agent sees black
outside of the grid confines). See Figure 1 for
a visualization of the observation windows.
The observation window serves two pur-

poses. First, if there are multiple snakes on
the board, the agent can easily know which

one it is controlling, namely the one at the
center of its observation window. Second,
it reduces the snake observations to a much
more manageable size of 11 × 11 instead of
40× 40.
The agent’s policy is a neural network

whose input layer takes in an observation,
and whose output layer outputs a probabil-
ity distribution over the action space.

2.3 Reinforcement Learning
Algorithm

We use Proximal Policy Optimization (PPO)
[4] with an actor and a critic to train our
agents. PPO maintains an actor, the pol-
icy πθ(a|s), and a critic, an estimate of the
value function Vθ(s). At each epoch, it al-
lows the agent to interact with the environ-
ment through its previous policy πθold(a|s),
collecting training data τ = st, at, rt. It then
optimizes the loss function

Lτ (θ) = LP
τ (θ) + LV

τ (θ) + LS
τ (θ), (2)

where LP
τ (θ) is the PPO policy function loss,

LV
τ (θ) is a value function loss, and LS

τ (θ) is
an entropy loss to promote exploration. The
key innovation of PPO is to define LP

τ (θ) as

Et [min (Atrt, Atclip(rt, 1− ϵ, 1 + ϵ))] , (3)

where ϵ is a hyperparameter, rt =
πθ(at|st)

πθold
(at|st) ,

and At is computed from Vθ(st) using an ad-
vantage estimation algorithm . This effec-
tively incentivizes the new policy πθ(a|s) to
remain close to the previous policy πθold(a|s).
In this loss, the gradient is not propagated
through At.
We modify an implementation of PPO

from the CleanRL [5] library for our exper-
iments.

2.4 Trained Agents

We trained six agents, each of them using
actor-critic PPO with 1.44 × 107 timesteps.

2



Agent Name Architecture NN Width NN Depth CNN Kernel Size Starting Length

BASELINE MLP 256 3 N/A 3
WIDTH-128 MLP 128 3 N/A 3
WIDTH-512 MLP 512 3 N/A 3
DEPTH-4 MLP 256 4 N/A 3
CNN CNN N/A 3 3× 3 3
LENGTH-10 MLP 256 3 N/A 10

Table 1: Hyperparameters For Trained Agents

All agents are trained in the standard 40×40
environment with 30 foods, and with γ =
0.999 and 1024 rollout steps. All but the last
agent have their runs with starting length 3.
The first agent, BASELINE, has an MLP

(multi-layer perceptron) architecture with
width 256 and depth 3. The other agents can
be viewed as perturbations off this agent. De-
tails about the hyperparameters of the vari-
ous agents can be found in Table 1
The agents WIDTH-128, WIDTH-512, and

DEPTH-4 have the same architecture as
BASELINE except with varying widths and
depths. The agent CNN uses a convolutional
neural network in place of a MLP. Finally, the
agent LENGTH-10 has identical architecture to
BASELINE, except that all of its training runs
have the snake start with length 10 instead
of length 3.

2.5 Evaluation Framework

To test the performance of the agents, we let
them run in test environments and measure
the final length at time-of-death.
The main goal of this study is to observe

whether the agents perform well in out-of-
distribution settings. As so, we propose the
following testing suite that focuses on ability
to play in an environment with obstacles, and
ability to play in a multiplayer setting, both
of which can be considered to be domain gen-
eralizations over the relatively simple training
environment.

TRAIN-ENVIRONMENT: This is the same en-
vironment used for training, 40×40 grid with
30 foods and starting length 3.

SIMPLE-MAZE: This environment intro-
duces a 20 × 20 black square in the center
of the grid, which induces death if the snake
touches it. It is intended to test whether the
agents can navigate in more constrained set-
tings than the spacious TRAIN-ENVIRONMENT.

HARD-MAZE: This environment has a long
black barrier that initializes the snake in a
confined exterior region, and forces the snake
to try to navigate into the interior of the bar-
rier to get more food. It is intended to be
a serious stress test of the agent’s obstacle
navigation capabilities.

MULTI-AGENT-TEST: This environment is
the same as TRAIN-ENVIRONMENT, except that
we deploy 5 snakes of starting length 3, all
using the same policy. We measure the final
length of the last standing snake, and report
that as our performance metric.

The various testing environments are de-
picted in Figure 2.

3 Results

To compute the average final lengths, we run
each testing environment N = 100 times and
compute the mean µ and standard error of
the mean, σ/

√
N , where σ is the standard

deviation of the observed final lengths. Fig-
ure 3 shows the results of our experiments.

3



Figure 2: Testing environments TRAIN-ENVIRONMENT, SIMPLE-MAZE, HARD-MAZE,
MULTI-AGENT-TEST from left to right

Train Environment Simple Maze Hard Maze Multi-Agent Test
0

25

50

75

100

125

150

175

200

Fin
al

 L
en

gt
h

Baseline
Width 128
Width 512

Depth 4
CNN
Starting Length 10

Figure 3: Average final lengths of agents in test environments

Note that most methods have compara-
ble performance on TRAIN-ENVIRONMENT, be-
tween final length 150 and 200, but CNN per-
forms substantially worse, with average final
length 115± 4.

All methods have substantially smaller fi-
nal lengths on SIMPLE-MAZE and even worse
performance on HARD-MAZE. Interestingly,
however, for both maze environments, CNN

performs best; this improved relative perfor-
mance is most prominent in HARD-MAZE. We
also note that DEPTH-4 performs noticeably
worse than other methods in SIMPLE-MAZE.

Interestingly, the average final lengths

in MULTI-AGENT-TEST are almost exactly
the same as the average final lengths in
TRAIN-ENVIRONMENT.

4 Discussion and Conclu-

sion

We hypothesize that the reason that the
performance in TRAIN-ENVIRONMENT and
MULTI-AGENT-TEST are nearly identical is
that in MULTI-AGENT-TEST, most snakes die
off quickly, and one snake is left, and it is then
playing effectively in TRAIN-ENVIRONMENT.

4



Figure 4: Competitive Dynamics in
MULTI-AGENT-TEST. First frame depicts
snakes repelling each other, second frame
depicts snakes “hugging” each other.

This hypothesis was formed by observing sev-
eral runs by eye, though there may be ways
to study this more systematically. We did
not expect this behavior when proposing the
testing suite, but it makes sense in hindsight.
Occasionally, we did find that

MULTI-AGENT-TEST would end up with
two long snakes fighting for survival, and
we observed some interesting competitive
dynamics. Some examples of these dynamics
are depicted in Figure 4.

Figure 5: Movement styles of MLP- and
CNN-based models. Left: MLP-based mod-
els learn a structure that reduces the chances
of self-collision. Right: CNN does not learn
such a structure.

We speculate that the performance of CNN
is less overfit to TRAIN-ENVIRONMENT, which
thereby enables it to generalize more effec-
tively to SIMPLE-MAZE and HARD-MAZE. In
particular, from examining testing runs, we
find that the non-CNN models converge to

an elegant strategy which involves repeatedly
traveling straight upward and then moving
back and forth as the snake travels downward
(see Figure 5). We believe that the non-CNN
reduces the probability of collisions, which in-
creases performance on TRAIN-ENVIRONMENT.
However, we suspect that this also reduces
the robustness of the snake’s obstacle avoid-
ance – the snake begins to expect a cer-
tain structure when it encounters black tiles
which does not hold in the maze environ-
ments. On the other hand, CNN does not learn
the structure, as shown in Figure 5, so it per-
forms more poorly on TRAIN-ENVIRONMENT,
but must also learn more robust avoidance
techniques for the black tiles. We believe that
this obstacle avoidance leads to improved
generalization in the maze environments.
These results provide some evidence that

convolutional neural networks possess strong
generalization capabilities in RL. Future work
can investigate variations in CNN hyperpa-
rameters to see if a model exists with strong
training and generalization performance.

Acknowledgements

We would like to thank Professor Cathy Wu
and TAs Chanwoo Park and Gilhyun Ryou
for their guidance and support during the
course.

References

[1] Robert Kirk, Amy Zhang, Edward
Grefenstette, and Tim Rocktäschel. A
Survey of Zero-shot Generalisation in
Deep Reinforcement Learning. arXiv e-
prints, page arXiv:2111.09794, November
2021.

[2] Mengyuan Yan, Qingyun Sun, Iuri Fro-
sio, Stephen Tyree, and Jan Kautz. How
to Close Sim-Real Gap? Transfer with

5



Segmentation! arXiv e-prints, page
arXiv:2005.07695, May 2020.

[3] Satchel Grant and Joakim Rishaug. Gym-
snake. https://github.com/grantsrb/

Gym-Snake, January 13 2021.

[4] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimiza-
tion Algorithms. arXiv e-prints, page
arXiv:1707.06347, July 2017.

[5] Shengyi Huang, Rousslan Fernand Julien
Dossa, Chang Ye, Jeff Braga, Di-
pam Chakraborty, Kinal Mehta, and
João G.M. Araújo. Cleanrl: High-quality
single-file implementations of deep rein-
forcement learning algorithms. Journal
of Machine Learning Research, 23(274):1–
18, 2022.

6

https://github.com/grantsrb/Gym-Snake
https://github.com/grantsrb/Gym-Snake

	Introduction
	Methodology
	Environment Description
	Agent Overview
	Reinforcement Learning Algorithm
	Trained Agents
	Evaluation Framework

	Results
	Discussion and Conclusion

