Measuring the Electron Mass through Compton Scattering

Gopal K. Goel (MIT) April 23rd, 2023

Classical Radiation-Electron Scattering (i.e. Thomson Scattering)

- Radiation incident on an electron causes electron to oscillate
- Causes electron to radiate away energy in all directions, due to acceleration of electron
- Classical electromagnetism predicts that wavelength of emitted radiation is equal to wavelength of incident radiation
- Compton's experiments showed that emitted radiation has longer wavelengths, violating the classical theory

Schematic depiction of Thomson Scattering

(https://commons.wikimedia.org/wiki/File:Thomson-scattering.png)

Compton Scattering

- Uses the quantized photon model of light
- Models the scattering process as a relativistic collision between a photon and an electron
- Using relativistic dynamics, we can derive

$$\frac{1}{E'} - \frac{1}{E} = \frac{1}{m_e c^2} (1 - \cos \theta)$$

Schematic depiction of Compton Scattering

(https://commons.wikimedia.org/wiki/ File:Compton-scattering.svg)

Experimental Setup

- Gamma rays generated through ¹³⁷Cs, which has strong photopeak at 661.6 keV
- Gamma rays Compton scatter off free
 electrons in target detector
- Electron energy dumped in target, scattered photon energy dumped in scatter detector
- Use coincidence detection to restrict to Compton events

Schematic for Compton Scattering Experiment (https://web.mit.edu/8.13/www/JLExperiments/JLExp01.pdf)

Experimental Functionality

- Can vary the angle of the scatter detector \bullet
- Software outputs (uncalibrated) histogram of energy values registered by detectors
- Coincidence can be turned on or off using software

Target output for Compton with $\theta = 60^{\circ}$

Scatter output for Compton with $\theta = 60^{\circ}$

• Use ¹³⁷Cs, ²²Na, and ¹³³Ba gamma peaks to calibrate the detectors

Spectra of calibration sources with labeled true peaks (target detector)

Energy Calibration

Barium 81 keV Sodium 4000 3000 356 keV Counts 0005 1000 511 keV 0 0 500 1000 1500 2000 Channel Number

Spectra of calibration sources with labeled true peaks (scatter detector)

Energy Calibration

- Use a linear fit between channel number Nand true energy E $N = \alpha E + \beta$
- Target: $\alpha = [2.68 \pm 0.03] \frac{\text{counts}}{\text{keV}}$, $\beta = 24 \pm 6 \text{ counts}$
- Scatter: $\alpha = [2.11 \pm 0.03] \frac{\text{counts}}{\text{keV}}$, $\beta = 16 \pm 10 \text{ counts}$

Expected Compton Spectra

- Assumes nontrivial fraction of coincidence events are true Compton events
- Scatter should be a large peak at scattered photon energy in the angular direction
- Target picks up electron energies for Compton at all angles, weighted higher for ones of the right angle
- Peak at E_e , and fall off at Compton edge
- Large peak at *E* due to high density of non-Compton events

Counts

Energy

Measured Spectra

- Measured multi-day exposures at $\theta = 30, 60, 90, 135, 150$
- The electron energy peak is washed out for $\theta = 90$, and is very weak for $\theta = 135, 150$

Target detector output for $\theta=90$

Extracted Peaks

- Energy given in keV, with statistical, then systematic uncertainty
- Systematic uncertainty arises from uncertainty in calibration parameters
- For $\theta = 30, 60, 135$, we find that $E_e + E' \approx E$, with a relative error of between 5% and 10%.

θ	N _e	N'	E_e	E'
30	189±25	1200±20	61±9±5	561±9±8
60	599±25	914±10	214±9±5	425±5±6
90	N/A	637±40	N/A	294±19±4
135	1129±40	420±20	412±15±5	191±9±3
150	1154±40	N/A	421±15±5	N/A

Checking Compton Prediction

- Recall the prediction $\frac{1}{E'} - \frac{1}{E} = \frac{1}{m_e c^2} (1 - \cos \theta)$
- We do a linear fit of 1/E' against $1 \cos \theta$
- Curve fit tells us $\frac{1}{m_e c^2} = [1.86 \pm 0.1] \cdot 10^{-3} \,\text{keV}^{-1}$

 $\frac{1}{E} = [1.48 \pm 0.05] \cdot 10^{-3} \,\mathrm{keV^{-1}}$

Linear fit of 1/E' against $1 - \cos \theta$

Conclusions

- Converting our previous results, we find the mass of electron to be $537 \pm 25 \text{ keV}$, which matches known value of 511 keV and we find $E = 675 \pm 25 \text{ keV}$, which also matches known value of 661.6 keV
- This gives strong evidence for Compton's theory over Thomson's theory, which gives further evidence for the quantum nature of light
- Electrical components broke several times, and this leads to an unknown systematic error in results, due to uncertainty in state of system over the multi-day runs

