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We measure the fine structure splitting of energy levels in sodium by observing a doublet structure
in the spectrum of sodium gas emission. We provide evidence that the doublet structure does indeed
arise from fine splitting. We also compare the measured splitting to theoretical heuristics for the
splitting, and find a quantitative match.

I. MOTIVATION

According to the Schrödinger theory of the atom, the
electrons are occupying several quantum states, which
are distinguished by their energy, angular momentum,
spin, etc. Atomic emission is the phenomenon where an
electron spontaneously transitions from a higher energy
state to a lower energy state, thereby releasing a photon
with energy exactly equal to the energy difference in the
states. By measuring the wavelengths of the emitted light
(i.e. finding the peaks of the emission spectrum of the
atom), we can infer the energy structure of the states of
the electrons in the atom.

In particular, we are interested in the fine structure
splitting of the energy levels, which causes the energy
levels of the electron states to come in pairs of values
that are extremely close to each other. This effect is
caused by the interaction of the spin of the electron with
the magnetic field of the nucleus. The splitting is easi-
est to analyze for hydrogenic atoms (i.e. those with one
valence electron), and it is more prominent in heavier
atoms. For this reason, we choose to analyze the fine
structure splitting in sodium, using optical spectroscopy.

II. THEORETICAL DESCRIPTION

II.1. Review of Hydrogen Atom

We begin by giving a brief overview of fine structure
splitting in hydrogen. In hydrogen, we have a single elec-
tron electromagnetically interacting with a proton, so the
quantum states of the electron are given by solving the
Schrödinger equation

Hψ(r⃗) :=
(
− ℏ2

2me
∇2 − e2

4πε0r

)
ψ(r⃗) = Eψ(r⃗). (1)

Let L = r×p be the orbital angular momentum operator,
S be the spin angular momentum operator, and J =
L + S be the total angular momentum operator. One
can show that there is a basis to the solution space of
(1) with basis elements parameterized by four quantum
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numbers |n, ℓ, j,mj⟩ (see §25.6 of [1] for more details).
These states have definite energy (given in terms of n),
L2 (given by ℏℓ(ℓ + 1)), J2 (given by ℏj(j + 1)) and
Jz (given by ℏmj). The quantum numbers must satisfy
n ∈ {1, 2, 3, . . .}, ℓ ∈ {0, 1, . . . , n − 1}, j ∈ {ℓ ± 1

2}, and
mj ∈ {−j, . . . , j}.

II.2. Fine structure in Hydrogen

The primary source of fine structure correction to the
energy levels is the phenomenon of spin-orbit coupling,
which is due to magnetic interactions between the spin
dipole nature of the electron and the magnetic field pro-
duced by the nucleus. In the frame of the electron, the
nucleus is a moving charge, so the electron feels a mag-
netic field B. Letting µ be the spin dipole moment of the
electron, we see that the hamiltonian needs a correction
δH = −µ ·B due to this magnetic interaction. One can
show (see §25.7 of [1]) that this correction is given by

δH =
1

2mc2
1

r

∂V (r)

∂r
L · S,

hence the term spin-orbit coupling.

Using the machinery of perturbation theory, one can
show that δH contributes an energy correction term that
depends only on the values of n, ℓ, j. In particular, states
with quantum numbers n and ℓ get divided into two
groups based on the value of j (either ℓ + 1

2 or ℓ − 1
2 )

with a small energy difference given by

∆En,ℓ =
e2α2

8πε0

1

n3ℓ(ℓ+ 1)
, (2)

where α ∼ 1
137 is the fine structure constant.

It is common to label states with the quantum number
n followed by one of the letters s,p,d, which correspond
to ℓ = 0, 1, 2, respectively. For example, the state 3s cor-
responds to n = 3 and ℓ = 0. Sometimes, there may also
be a subscript, which corresponds to the value of j. In
Figure 1, the energy levels of hydrogen are schematically
depicted, specifically the fine structure splitting between
levels with the same n and ℓ but different j. One impor-
tant feature is that the s states don’t split, since there is
only one value for j, which is j = 1

2 .
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FIG. 1. Schematic diagram of the energy levels of hydrogen
with fine structure splitting (not shown to scale)

II.3. Fine structure in Sodium

The fine structure splitting in sodium follows the same
general patterns, but there is no exact formula like (2).
The n = 1 and n = 2 shells are full in sodium, so the
singular valence electron has physics somewhat similar
to a hydrogen electron, due to shielding from the inner
layers. The ground state is now 3s, again because the
inner shells are full.

We heuristically expect the splitting to follow the same
form as (2), so in particular, we expect

∆En,ℓ ∼
1

n3ℓ(ℓ+ 1)
. (3)

We choose to analyze fine structure splitting in sodium
since the splitting in hydrogen is too small for our appa-
ratus to detect (less than 0.1 Å).

III. EXPERIMENTAL GOALS

Our first goal is to measure a spectrum of sodium, and
observe that the emission peaks come in doublets, which
corresponds to the fine structure splitting in the states
that are being transitioned to and from. We also aim
to identify the state transitions that lead to those peak
doublets.

Our second goal is to verify that the energy difference
in the two peaks corresponding to a transition from state
X to state Y is the same as the energy difference in the
two peaks corresponding to a transition from state Y to
state Z. Here we are assuming that the fine structure
splitting in state Y is much larger than in states X and

FIG. 2. Monochromator schematic setup ([5])

Z. Verifying this would provide evidence for the hypoth-
esis that the observed doublets indeed arise from fine
structure splitting in the individual states.
Our third and final goal is to verify that the fine struc-

ture splitting in a state (n, ℓ) is approximately propor-
tional to 1

n3ℓ(ℓ+1) .

IV. EXPERIMENTAL PROCEDURE

IV.1. Experimental Setup

We measure the emission spectrum of an atomic gas
using a monochromator. The experimental setup is de-
picted in Figure 2.
Light from atomic emission leaves the gas lamp, and

is passed through a thin slit as it enters the monochro-
mator. The light is then collimated by a circular mirror
at the other end of the monochromator onto a diffrac-
tion grating, which splits the different wavelengths of the
light into beams of slightly varying angles. The different
beams are then focused through another circular mir-
ror, and are sent to the photomultiplier tube (PMT),
passing through another slit in the process. Due to the
diffraction grating splitting the different wavelengths of
light into beams of different angles, only a small band
of wavelengths makes it to the PMT, which allows us
to measure the intensity of a specific wavelength in the
emission spectrum.
We have the ability to tune the angle of the diffraction
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FIG. 3. Measured spectra of mercury and neon

grating, which allows us to send different wavelengths of
light into the PMT tube. We can also tune the slit width,
and in particular decreasing the slit width decreases the
band of wavelengths that make it to the PMT (thereby
increasing the resolution of our measurement), but also
decrease the amount of signal the PMT picks up. For
almost all scans, we keep the slit width fixed at 10µ.

We control the angle of the diffraction grating through
software, and we also read the photon count value (PMT
reading) as a function of wavelength from software. The
software automatically converts the angle of the diffrac-
tion grating into a value for the measured wavelength,
but over several runs, the conversion is off, and has a large
systematic offset. A large part of this experiment is get-
ting rid of that systematic offset by calibrating the wave-
length readings by comparing to known emission spectra
for neon and mercury.

IV.2. Wavelength Calibration

As mentioned above, the software outputs photon
count as a function of wavelength, but the wavelengths
are uncalibrated. We solve this by measuring the spectra
of mercury and neon using our setup, and comparing to
known values (found at [2], [3]), and computing a cal-
ibration function which allows us to convert measured
wavelength λm into true wavelength λt.
Figure 3 shows the measured spectra of mercury and

neon. Given that the uncalibrated wavelengths are some-
what close to the true values, we can construct a bijec-
tion between our measured peaks and the true peaks. It
is particularly useful to use doublets in the spectrum, for

FIG. 4. Calibration curve fitting with χ2 probability and
residuals

example, the doublet near 3130 Åin mercury was partic-
ularly useful in matching the peaks.
The mercury peaks generally cover the range

[3000, 6000] Åand the neon peaks cover the range
[5000, 7000] Å, so using both sets of peaks gives us a wide
range we can interpolate in. We extract a set of 24 peaks
that we use for our calibration.
We use a quadratic fit

λm = aλ2t + bλt + c (4)

with χ2 curve-fitting. The result of the curve fit is shown
in Figure 4. The fit parameters are a = (−4.56± 0.15) ·
10−7 Å

−1
, b = 1.0004 ± 0.0001, and c = −114.1 ± 0.3 Å.

We also keep track of the covariance matrix of the fit pa-
rameters, which will be important for error propagation
later.

V. ANALYSIS AND RESULTS

V.1. Raw Data and Calibration

We measure three doublet pairs in the sodium spec-
trum, with uncalibrated wavelengths given by

3184.6, 3185.2, 5762.35, 5768.25, 8040.3, 8051.85,

all in Å, and with uncertainties of 0.2 Å(given by esti-
mating the peak width). The raw spectra are shown in
Figure 5.
We now calibrate these wavelengths using our fit func-

tion. In order to estimate the uncertainties on the cal-
ibrated wavelengths, we draw each of the three fit pa-
rameters a, b, c from a multivariate Gaussian with the
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FIG. 5. Measured spectra for three sodium doublets

right mean and covariance, and we randomly sample the
calibrated values 1000 times, and take the standard de-
viation of those samplings to be the uncertainty on the
calibrated values.

Performing the calibration, we find calibrated wave-
lengths of

4p→ 3s : [3302.3± 0.6] Å, [3302.9± 0.6] Å

3p→ 3s : [5889.9± 1.1] Å, [5895.8± 1.1] Å

3d→ 3p : [8181.6± 1.6] Å, [8193.4± 1.6] Å.

Here, we match the emission wavelengths to state transi-
tions by comparing to the known sodium spectrum found
at [4].

The inverse wavelength is proportional to the energy,
so we report the difference in inverse wavelengths for each
doublet as a proxy for the energy difference. The in-
verse wavelength differences from the three transitions
are shown in Figure 6, measured in 10−7 Å−1. Note that
the errors in the above reported wavelengths are highly
correlated, so to compute the errors in the inverse wave-
length difference we resample the fit parameters and re-
port the standard deviation of the inverse wavelength
difference as the uncertainty.

V.2. Discussion of Results

In the above, we achieved our first experimental goal of
measuring the doublet peaks and identifying their state
transitions.

Note that we have two transitions that share an end-
point, which are 3d → 3p and 3p → 3s. The level 3s
has no splitting, and the splitting of level 3d is much
smaller than that of 3p, due to the heuristic (3). We ob-
serve that their inverse wavelength differences are equal
within their errors, so our second experimental goal has
also been achieved.

FIG. 6. Inverse wavelength differences for various transitions
in sodium, measured in 10−7 Å−1

Using the 4p→ 3s transition, we can estimate the en-
ergy splitting of the 4p level to be [0.55±0.25]×10−7 Å−1,
and we can estimate the splitting of the 3p level to be
[1.72 ± 0.05] × 10−7 Å−1. These have ratio 0.3 ± 0.1,
and the heuristic (3) predicts a ratio 33/43 = 0.42, again
within error of our measurement. This achieves our third
experimental goal.

V.3. Discussion of Systematic Uncertainty

The primary source of systematic uncertainty is the
calibration of the instrument, which we attempted to
minimize by performing an elaborate calibration proce-
dure. The second main source of systematic uncertainty
is lack of persistence of calibration day to day. We have
measurements of the mercury spectrum separated by five
days, and we find that the difference in peak values is
always within 0.1 Å, so this systematic uncertainty is
dwarfed by the statistical uncertainty.
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